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LETTER TO THE EDITOR 

Low-temperature phase diagram for models with small 
quasiperiodic interactions 

F Koukiout, D Petritist and M ZahradnikS 
t Institut de Physique Theorique, Universiti de  Lausanne, 1015 Lausanne, Switzerland 
$ Faculty of Mathematics and Physics, Charles University, 18600 Prague, Czechoslovakia 

Received 13 October 1987, in final form 29 October 1987 

Abstract. We extend the Pirogov-Sinai theory to some class of quasiperiodic interactions 
and we describe the phase diagram at low temperatures. 

Although there is no obvious relation between the ground states of the Hamiltonian 
and the phase diagram at low temperature for classical spin systems it is intuitively 
appealing that such a relation exists. The Pirogov-Sinai theory [ l ]  makes rigorous 
this intuition; it allows under some general conditions the description of the phase 
diagram at low temperature as a small perturbation of the diagram at zero temperature. 
Moreover, it shows that the corresponding Gibbs states arise as small perturbations 
of ground states of the Hamiltonian. In recent years it has proved that this theory 
provides a powerful tool for the study of a general class of models [2-71 in the case 
of absence of any symmetry in the Hamiltonian. (See [2,4,7,8] for more detailed 
references.) 

All the developments of the Pirogov-Sinai theory up to now have considered the 
case of translation-invariant (or periodic) Hamiltonians. At a first glance, the transla- 
tion invariance seems to be very important in many steps of the theory. However, if 
one analyses what is really needed one realises that it is sufficient to have only a 
translation invariance ‘in the mean’ with fluctuations in the volume having a magnitude 
smaller than a ‘surface term’ of this volume. This condition is fulfilled in many 
interesting models. 

The aim of this letter is to present some development of the Pirogov-Sinai theory 
for the case of quasiperiodic interactions (at least for a special class of models with 
a small quasiperiodic perturbation). Roughly speaking, we show that for a small 
quasiperiodic perturbation of the translation-invariant Hamiltonian, the phase diagram 
of the model is only a small perturbation of the original phase diagram. In the following, 
we only sketch the main lines of the theory and its extension to the case of quasiperiodic 
interactions. For a more detailed exposition, see [8]. 

The study of this problem is not of purely academic interest. In the last few years 
many new materials have been discovered exhibiting a quasiperiodic structure; it 
therefore seems interesting to understand the statistical physics of these objects. As a 
first step in this direction we study simplified models where the spins live on a regular 
lattice but they interact via quasiperiodic interactions. Such models could even describe 
quite precisely thin epitaxial layers of two different species of adatoms on a 
quasiperiodic substratum. In this case the adatoms arrange themselves on a regular 
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lattice but the choice of the adatom species (A or B say) is modulated by the underlying 
quasiperiodicity of the bulk. Such models precisely fall into the class of interactions 
we study here. 

We consider a spin, living on a lattice Z”  (with v L 2) and taking vzlues in a discrete 
finite set S. A configuration, x, is an element of SE”.  The Hamiltonian is written as 
usual in terms of the interaction potentials ( D A  

H ( x )  @ A ( X ) .  (1) 
We assume that the interactions have a finite interaction range r, i.e. ( D A  0 if diam A > r. 
In our case some of the potentials are quasiperiodic. As a concrete example of a 
quasiperiodic model, consider an Ising model with a quasiperiodic external field 
described, for instance, by the Hamiltonian 

H,(c+)=c f ( l - a l c + J ) + x  htal (2) 
(11) 

with h, = cy sin(2.rrwIi, +. . .+2nw,i,), where { w , ,  1}1= 1,. . . , Y are rationally indepen- 
dent having some special Diophantine properties that are explained later, and cy is 
small. The following setting is, however, much more general and not necessarily 
attached to this particular model. 

We express the Hamiltonian (1) in terms of contours as usual in the Pirogov-Sinai 
theory, i.e. we first choose some constant reference states {xq, q E Q} indexed by an 
index set Q c S. These reference states may be considered as the ground states of the 
Hamiltonian without quasiperiodic interactions (unperturbed Hamiltonian). The 
generalisation to non-constant reference states, for instance quasiperiodic ones, seems 
feasible. Work in this direction is in progress. 

The important notion of the contour is introduced as follows [ 9 ] .  One first defines 
a q-correct point for the configuration x as a site iEZ”  in the r-neighbourhood of 
which the configuration x is equal to x4. Consequently, an incorrect point is a site 
i E Z “  for which there is no q such that i is a q-correct point. The contours r of x are 
defined as the restriction of the configuration x to the connected components of the 
set of incorrect points. These connected components are denoted by supp r and the 
interior (int r) and exterior (ext r) are defined in an obvious way. We say that r is a 
q-contour rq if the configuration on ext r is equal to x y .  Defining the local energy 
density e , ( t )  for the q-reference state by 

and the contour weight @(P) by 

the Hamiltonian (1) can be written in the volume A as 

H ( x , ) =  c C W f ’ ) +  C C e , ( t )  
q ’ E Q  1 q ’ E Q  l e  2, ,  U, supp 1.:’ 

provided that all contours rp’ satisfy the condition supp rf’c A. (Ay denotes the set 
of points i E A where the configuration x is equal to the q-reference state; i.e. x, = x?). 
The contour weights are required to fulfil the so-called Peierls condition 

for some .r = ~ ( p )  which becomes big at low temperature. (Typically, T is proportional 
to P.)  

aqr) 3 .r(supp rl 
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The ‘diluted’ partition function with q-boundary condition, Z q ( A ) ,  is defined as 
usual and the mean free energy of the model as 

1 
h, = lim --,(A). 

ATZ ’  1121 

Let W be some finite subset of H”. A W-local function f w  of the spin configuration 
x is a function depending on the values the configuration x takes on W, i.e. if 
( t l  , . . . , ti ,,) denote the points of W taken in some order (e.g., lexicographic), fNJ = 
f , ( ~ , ~  y . .  . , x ~ , ~ ~ ) .  We call this the extrinsic dependence off, on W. For example, the 
interaction potentials @ A  are A-local functions. The W-local functions are introduced 
to formulate the properties of the interaction potentials in an abstract manner. One 
must remember that we wish to deal with a situation where some of the interactions 
are not translation invariant (in fact they are quasiperiodic). Hence, the dependence 
of the W-local functions on the values of the configuration x on W does not exhaust 
all its functional dependence on W as should be the case if all the interactions were 
translation invariant. What will play an important role in the following is the intrinsic 
dependence of W-local functions on W. Let W, be the parallel transport of W by 
s E Z ”  and ( t i ,  , . . , f(w,l) be the points of W, taken in the lexicographic order. To grasp 
the intrinsic dependence off, on W we introducef,,(x,;-,, . . . , xfcw\l-s). For any two 
vectors a, b e R “  we define ab E R ”  to be the vector obtained by componentwise 
multiplication. Now, assume that there exist M vectors w ” )  E R”, i = 1, . . . , M, and a 
function g, of 2M vector variables (g,: R 2 M ”  +R), periodic in each of the last M 
vector variables with periods P(’)E R”, i = 1, .  . . , M, and ( P t ’ ,  ut)), i = 1,. . . , M ;  
a = 1 , .  . . , v being rationally independent, and such that we can write 

quasiperiodic W-iocal function. Strictly speaking, g, depends also on the values of 
the configuration x on the set W (before its translation by s )  but this dependence is 
not explicitly stated. In the example given at the beginning of this letter, the one-particle 
potential @{t)(r,) = a sin 2 4 w ,  i ) r ,  provides a particularly simple illustration of a 

[ a  sin 27r(w, i ) ~ , ]  cos 2740, s ) + [ a  cos 27r(w, i)c~,]sin 2740, s) .  The set Lf = 
{ m , w ‘ l ) + .  . .+ mMw l m l , .  . . , mM E H ” }  is called the frequency module off generated 
by w ( ’ ) .  For simplicity we consider, in the following, quasiperiodic functions with 
frequency module generated by a unique vector w. Generalisations to more complicated 
frequency modules introduce solely notational difficulties. Since some interactions are 
quasiperiodic, all the subsequently defined functions of geometrical objects (e.g. 
@(r), e,( t ) ,  etc) will be quasiperiodic, even if it is not explicitly mentioned. 

Suppose that the original Hamiltonian admits m + 1 degenerate states. Then the 
mean energy densities 

3 s,. . . , w ( ~ ) s ) ;  then f w ,  is called a ( 1 )  O ( M ) .  w ( I )  fw,(x,,-s,. . . , Xfi, = g w ( w  , . . . , 

quasi periodic {i}-local function since @{ I + 5 } ( U f  + s - s 1 = 

( M )  

will be the same for q1 . . . , qm+, . Hence, at zero temperature we have the coexistence 
of M + 1 states. To construct the phase diagram at zero temperature it is sufficient to 
introduce a set of m external fields removing the degeneracy of the ground states, i.e. 
to introduce a suitable vector parameter f = ( tl, . . . , &,,) in the Hamiltonian. The 
mean energy densities become functions of f ,  eq = e,(f) and the degeneracy e,,(O) = 
. . . = e,-,+,(O) should be removed in the sense explained below (see the theorem). 
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Knowing the phase diagram at zero temperature means that a map z is given on the 
space of parameters 6 of the form 

z :R"  + I w m  4 5 )  = (eq2 - eq,, . ' . 9 - eqJ* 

I ( & )  = (hq2 - h,, , . . . 3 hq".+l - hqJ. 

Equivalently, the phase diagram at low temperature is described by a map 1 of the form 

I : Iw"+Iw" 

Intuitively one expects that the phase diagram at low temperature looks very similar 
to (i.e. it has the same number of phases, the same number of coexistence lines, etc, 
as) the phase diagram at zero temperature. The Pirogov-Sinai theory makes this 
intuition rigorous establishing that under certain conditions the map I-'oz : R" + Iw" 
exists and it is a homeomorphism near the identity or, stated differently, the map 1 is 
a homeomorphic deformation of z. However, this property for 1-'0 z cannot be proved 
for every quasiperiodic interaction. The generator w of the frequency module must 
verify the Diophantine property I I ~ ~ / T I ~  3 1/K,n2 for every n E Z"\{O}(ll* 11 means the 
distance to the nearest integer), and the interaction must be smooth enough such that 
we have the following bound for the derivatives of the contour weight 

( t  being the lexicographically first point of supp r) and the very mild bound 

ILe d(Wt)k ' ( [ ) I  c K  k = 1 , 2 , 3 , 4 .  

Under these conditions we can prove the following theorem. 

Theorem. Let IQ1 = m + 1 and 5 be a vector parameter written in the form 
Let e q ( 5 )  be all the same for t = O  and the matrix 

. . , 6"). 

with i = 2 , .  . . , m+l and j =  1 , .  . . , m be invertible. Then, if 7 =  7(p ,  IIM-'IJ) is 
sufficiently large, and the previous conditions on w and the derivatives of e x p ( 4 )  
and e , ( t )  are fulfilled, the mapping 

1(5) = ( A q 2  - hql 1 . . . , h,,,,+, - hql)  
is invertible and one-to-one between some neighbourhood of 0 in R" and an open 
v 3 0 in R". The map I - ' o z  where z is given by z(5) = (eq, - eql,  . . . , eq,,,+, - eql) is 
moreover smooth. 

We do not give any proof here; it uses some standard tools from analysis like the 
inverse map theorem. All the technical steps can be found in [8]. 

I t  is easy to generalise our results to take into account much larger sets of irrational 
w. However, the less restricting the conditions are on w,  the more restricting the 
requirements should be on the derivability, i.e. if 11 nw/ T / ~ Z  1/K,  n'+" holds for some 
integer a, then to prove the theorem we need a control on the derivatives dk/d(wt)k 
up to the order 3 + a .  We conjecture that the phase diagram at low temperature is 
different from the one at zero temperature if the control on derivatives stops to some 
order less than required by the Diophantine properties of w. 
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